
CSE 421/521 Midterm Solutions
—SOLUTION SET—

25 Mar 2015

Please fill out your name and UB ID number above. Also write your UB ID number at the
bottom of each page of the exam in case the pages become separated.

This midterm exam consists of three types of questions:

1. 10 multiple choice questions worth 1 point each. These are drawn directly from lecture
slides and intended to be easy.

2. 6 short answer questions worth 5 points each. You can answer as many as you want,
but we will give you credit for your best four answers for a total of up to 20 points.
You should be able to answer the short answer questions in four or five sentences.

3. 2 long answer questions worth 20 points each. Please answer only one long answer
question. If you answer both, we will only grade one. Your answer to the long answer
should span a page or two.

Please answer each question as clearly and succinctly as possible. Feel free to draw pic-
tures or diagrams if they help you to do so. No aids of any kind are permitted.

The point value assigned to each question is intended to suggest how to allocate your
time. So you should work on a 5 point question for roughly 5 minutes.

Statistics:

• 135 students took this exam.

• 19 was the median score. (This exam was way too hard.)

• 19.5 was the average score.

• 8.37 was the standard deviation of the scores.



CSE 421/521 Midterm Solutions 25 Mar 2015

Multiple Choice

1. (10 points) Answer all ten of the following questions. Each is worth one point.

(a) What singer was not played before class this semester?√
Tony Rio

√
Amanda Banana

√
Stacy Keys

√
Lisa Lee

(b) All of the following are critical section requirements except
© mutual exclusion.

√
concurrency. © progress. © performance.

(c) Interprocess communication is harder than intra-process communication.√
True © False

(d) All of the following are private to each process thread except
© stack.

√
file handles. © registers.

(e) What action does not require the kernel?√
Switching between two threads. © Reading from a file. © Creating a

new process. © Altering a virtual address mapping.

(f) What part of the address space is not initialized using information from the ELF
file?
© Code segment.

√
The heap. © Uninitialized static data. © Initial-

ized static data.

(g) The Rotating Staircase Deadline Scheduler is most similar to which other schedul-
ing algorithm?
© Lottery scheduling. © Round-robin.

√
Multi-level feedback queues.

© Random.

(h) Which of the following is not a part of making a system call?
© Arranging the arguments in registers or on the stack. © Loading the
system call number into a register. © Generating a software interrupt.√

Allocating memory in the heap using malloc.

(i) What information would probably not be stored in a page table entry?
© The location on disk. © Read, write or execute permissions.

√
The

process ID. © The physical memory address.

(j) Paging using fixed-size pages can suffer from internal fragmentation.√
True. © False.

2 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

Short Answer

Choose 4 of the following 6 questions to answer. You may choose to answer additional
questions, in which case you will receive credit for your best four answers.

2. (5 points) One way to eliminate deadlock when acquiring multiple locks is to elimi-
nate cycles. Describe another way to avoid deadlock (2 points) and how to implement
it (3 points).

Graded by Zihe Chen.

Solution:

There isn’t much you can do about protected access to shared resources, which re-
quires waiting—either passive or active. In some cases adding resources to eliminate
unnecessary sharing could be an option, and we’ll accept that. (Eliminating sleeping
isn’t a solution, since replacing deadlocks with livelocks isn’t a great idea.) But the
other two conditions are potential solutions:

1. Add resources, eliminating the need for sharing. As an example from the dining
philosophers problem, adding chopsticks eliminates the need to share. We’ll accept
this answer if you were quite specific about this not working in all circumstances,
since in certain cases global resources are required for correctness.

2. Allow resource preemption, creating a way for the operating system to forcibly
take a resource from a thread that is holding it. One way to implement this is
to detect a deadlock by identifying a circular dependency in the wait queue and
then interrupt one of the threads holding the locks causing the cycle. This would
require some way for the thread to register a handler each time it requests a lock
that would be called if that lock was force dropped.

3. Disallow multiple independent requests, preventing a thread from holding some
resources while requesting others. You could implement this by checking each
time a thread requests a lock to make sure that it doesn’t hold any other locks.
Enforcing this without any new lock acquisition mechanisms would require pro-
grammers to change their code to introduce new locks covering cases. Alterna-
tively, you could create a new locking mechanism allowing multiple locks to be
acquired simultaneously.

Statistics:

• 122 out of 135 students answered this question.

• 2 was the median score.

• 2.18 was the average score.

• 1.9 was the standard deviation of the scores.

3 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

Grader Feedback:

Common mistakes:

• Rephrasing eliminating cycles method stated in the problem, for example, saying
that resources need to be ordered for locking.

• Implementing their methods by using do if cannot acquire a lock, which
is not correct since it is impossible to know if you can immediately acquire a lock
successfully.

• Not allowing parallelism.

4 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

3. (5 points) Describe two changes to the OS virtual memory system that you would
need or might want to make to accommodate 48-bit virtual and physical addresses
(1 point each). For each, describe how it would affect the computation or memory
overhead of virtual to physical translation (2 points each).

Graded by Jinghao Shi.

Solution:

There were a few options here:

1. Page table entry size. You clearly need to do something about your page table
entries, since whatever you did to bitpack for 32-bit virtual addresses is going to
change with 48-bit virtual addresses. Almost inevitably, you’re going to end up
storing more state.

2. Address space size. You don’t necessarily have to change the address space size,
since you can simply fit more content from 32-bit wide address spaces into a system
with 48-bit virtual addresses. You may want to change the break point between
userspace and the kernel, however, since there is no point wasting any of the 4 GB
wide virtual address space on the kernel at this point. Everything from 0x0 to
0xFFFFFFFF should be used for the process, with kernel addresses outside of that
range (¿ 0x100000000). This doesn’t necessarily have any direct effect on the
overheads, although it may affect the size of other data structures (PTEs or page
tables).

3. Larger pages. You may really want to increase the 4K page size at this point, with
the concordant tradeoff between TLB faults and spatial locality. Larger pages may
reduce the number of translations required.

4. Different page table structures. It could be time to add a third level to the existing
two-level page tables, particularly if you decide to expand the the address space
size. The goal would be to reduce the amount of space required for the page tables
for common address space layout patterns.

5. MMU changes. Clearly the MMU and TLB need to be modified to help map 48-bit
virtual addresses to 48-bit physical addresses. No effect on the kernel overheads
here, but any speculation about the affect on hardware (wider addresses might
imply fewer entries) would be accepted.

Statistics:

• 60 out of 135 students answered this question.

• 3 was the median score.

• 2.7 was the average score.

• 1.84 was the standard deviation of the scores.

5 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

4. (5 points) Describe how a scheduling algorithm might improve resource allocation
by observing processes communicating using pipes (4 points). What is a tradeoff
involved in this decision (1 point)?

Graded by Jinghao Shi.

Solution:

Assuming I have the following shell pipeline: foo | bar. Due to the pipe between
them, before each run we know that bar cannot make much progress until foo runs
and begins to fill the pipe. So we could just run foo to completion, buffer all of its
output in the pipe, and then run bar to completion. This would minimize the context
switches between them.

However, the tradeoff here is that this requires a large amount of memory—or some
kind of storage—to buffer the pipe contents. Switching between the processes can help
reduce memory overhead by keeping the pipe size smaller. Ideally, we could run
them on separate cores, but might still need to schedule them carefully so that bar
has enough work to do when it runs to justify the context switch while foo doesn’t
fill the buffer too quickly.

Statistics:

• 108 out of 135 students answered this question.

• 2 was the median score.

• 1.82 was the average score.

• 1.6 was the standard deviation of the scores.

Grader Feedback:

There are two common mistakes:

• Processes that communicate with a pipe should be allocated with same priority and
be scheduled to run together. False: writers should be scheduled before readers.

• Using pipe is an indication that the processes are more interactive, therefore should
be given higher priority. False: there is no absolute correlation between using pipes
and being interactive.

6 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int32_t foo[1024];
5
6 int
7 main(int argc, const char * argv) {
8 buffer = (char *) malloc(10240); // You can assume that malloc succeeds.
9 int32_t bar[1024];

10 // <-- Here -->
11 struct fooer[24];
12 }

5. (5 points) Examine the simple program above. At the point in its execution indicated,
at minimum how many 4K pages of memory will it require in each segment: code,
stack and heap? Justify your answer (5 points).

Note that you can ignore dynamically-loaded libraries, and assume that malloc does
not consume any memory for its own data structures (if only).

Graded by Zihe Chen.

Solution:

The process has:

• At least two code pages: one for the 4K foo array, and at least one more for the rest
of the code. (We’d accept answers where you pointed out that we didn’t ask about
the data segment and note that that’s where foo would actually be allocated.)

• At least two stack pages: one for the 4K bar array, and at least one more for any-
thing else on the stack. (There is at least one other thing on the stack: argv!)

• At least three heap pages for the 10K dynamically-allocated buffer.

So at least seven.

Statistics:

• 81 out of 135 students answered this question.

• 2 was the median score.

• 1.49 was the average score.

• 1.63 was the standard deviation of the scores.

7 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

6. (5 points) Some systems provide separate exception handlers for TLB-faults and all
other kinds of exceptions, allowing the operating system to handle them separately.
First, describe why this might be a useful feature for the hardware to provide (2
points). Second, suggest one way that the operating system might take advantage
of this differentiation (3 points).

Graded by Jinghao Shi.

Solution:

The reason to have separate exceptions is to allow the OS to establish separate code
paths—this is kind of given away by the second part of the question. This is particu-
larly important given that TLB exceptions are extremely common and, if you improve
performance on this hot code path, then the system will run faster overall.

One way that the OS could take advantage of this differentiation is by designing a TLB
handler that doesn’t require saving all of the state required by the system call path.
In general, system calls and hardware interrupts can branch off into very long code
paths, meaning that it is reasonable to save all of the registers up front. However, the
TLB code path is extremely specific, and so might be able to avoid saving as much
state—at least initially. If it branches off into a page fault, then more state might need
to be saved, but that could be done at that point.

Statistics:

• 104 out of 135 students answered this question.

• 1.5 was the median score.

• 1.22 was the average score.

• 1.22 was the standard deviation of the scores.

Grader Feedback:

• Some students mistakenly interpreted “separate exception handler for TLB-faults”—
they thought the system provides hardware TLB fault handler.

• Most students got the first part, yet missed the second part of the question.

8 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

VPN SLT

0
1 450
2
3
4
5 120
6
7
8
9 320

(a) TLT

VPN PPN

0 9
1 84
2
3 39
4
5
6 14
7 10
8
9

(b) SLT at 450

VPN PPN

0 31
1
2
3 72
4 62
5
6 40
7 43
8
9

(c) SLT at 320

VPN PPN

0 94
1
2
3 10
4 13
5
6 8
7
8
9

(d) SLT at 120

Table 1: Process Page Tables

7. (5 points) The HappyStudent architecture has byte-addressable memory with 10-
byte virtual pages. The HappyOS operating system uses two-level pages tables to
support 1000-byte virtual address spaces by dividing the virtual page number into a
10-byte second-level index and using the rest as the top-level index.

First, given the virtual address 273, identify the virtual page number, the offset, and
the first and second level page table indices (1 point).

Second, given the top-level page table (TLT) and second-level page tables (SLT) above
for the currently-running process provided above, indicate the result of the following
four virtual to physical page translations (1 point each).

Graded by Zihe Chen.

Solution:

For 273, the virtual page number is 27, the offset is 3, and the first and second level
page indices are 2 and 7.

Translations follow:

1. 165→ 145

2. 578→ Invalid (no entry in second-level table).

3. 57→ Invalid (no entry in top-level table).

4. 900→ 310

Statistics:

• 63 out of 135 students answered this question.

• 2 was the median score.

• 1.94 was the average score.

• 1.66 was the standard deviation of the scores.

9 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

Long Answer

Choose 1 of the following 2 questions to answer. Do not answer both questions. If you
do, we will only read one, most likely the one that looks shorter and more incorrect. If
you need additional space, continue and clearly label your answer on other exam sheets.

8. (20 points) Choose one of the following two questions to answer:

1. Interface Size Tradeoffs. Linux and other UNIX variants provide a fairly thin sys-
tem call interface, consisting of roughly 300 system calls. You are now familiar
with a subset of these calls, particularly those you implemented for ASST2. In con-
trast, the Windows kernel interface contains almost an order-of-magnitude more
system calls: approximately 3000.
First, describe the tradeoff between small and large system call interfaces. What
is good about a thin interface? How about a thick interface (4 points)? Second,
provide three examples illustrating the problems with the thin system call inter-
face you are familiar with. For each, describe how adding additional system calls
would help, and what their interface would be (4 points each).
Finally, for one of your new system calls describe the operating system changes
that would be required to implement it. You are free (but not required) to reference
OS/161-specific implementation details in your answer (4 points).

2. Concurrent System Calls. As core counts have increased, the OS has become a
source of potential bottlenecks for multithreaded applications. One source of poor
scaling behavior is when two system calls cannot be executed concurrently, and
in some cases redesigning the system call interface can improve concurrency and
performance on multicore systems.
Consider the code below and a multithreaded application where, on an N core ma-
chine, N thread run openclose1. First, describe the OS performance bottleneck
that this code might encounter on a multicore system. Note that open is imple-
mented to return the lowest available file descriptor, but very few apps rely on
this behavior. Be sure to describe the source of the bottleneck clearly (10 points).
Second, describe how alter the system call interface to remove this particular per-
formance bottleneck (10 points).

1 void openclose() {
2 // Repeatedly open and close a file.
3 while (1) {
4 int fd = open("/tmp/foo");
5 close(fd);
6 }
7 }

1Don’t worry about why an app would do anything so seemingly meaningless. If it’s helpful, just
assume your boss wrote it and is wondering why it doesn’t work well.

10 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

Graded by Guru Prasad Srinivasa.

Statistics:

For (8.1):

• 75 out of 57 students answered this question.

• 5 was the median score.

• 6.85 was the average score.

• 4.7 was the standard deviation of the scores.

For (8.2):

• 57 out of 135 students answered this question.

• 0 was the median score. (This question was too hard.)

• 3.79 was the average score.

• 6.3 was the standard deviation of the scores.

Grader Feedback:

Generally these questions were not that hard if you read them carefully, figure out
what they were asking, and then followed instructions when crafting your answer. Both
questions include a fairly clear template for what your solution was intended to look
like: “First . . . continue . . . You will want to consider . . . Second . . . You will want to
think about . . ..” Sadly some of you seemed to fail to read this part of the question!

It also seemed that many students ran out of time answering the short answer ques-
tions and didn’t devote enough time to the long answer. Given that it was 20 points,
this was not a particularly wise decision.

Individual grader feedback specific to each question is included below.

11 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

Solution: Interface Size Tradeoffs.
First, describe the tradeoff between large and small system call interfaces. Large
interfaces allow processes to be more specific about exactly what they want the oper-
ating system to do, which eventually leads to fewer system calls and fewer transitions
into the kernel, which could improve performance. (Large systems call interfaces also
might expose more features, although you were free to assume that the feature set ex-
posed by both large and small interfaces was the same.)

In contrast, small interfaces are easier for the operating system to implement and
maintain and make it more clear to application developers which of multiple ways
to do things is the correct way. If there’s only one way to accomplish something, it’s
what the OS developers will work to support; if there are multiple ways, it’s not nec-
essarily clear which is the most up-to-date. This was the canonical complaint about
the Windows interface by third-party developers, which was (partly due to back-
wards compatibility), with half-a-dozen options available to accomplish a particular
task the right approach wasn’t clear. However, if you worked for Microsoft (say, de-
veoping Internet Explorer), you could just email the guys at the Windows team and
ask “Hey, which way of reading data from a file has the best perfomance?”

Second, provide three examples illustrating the problems with the thin system call
interface you are familiar with. The best way to do this is to show where multiple
system calls are required to accomplish something useful that could be done using a
single call. In none of the cases that we provide as solutions does the implementation
required much past adding a new system call number and handler, but your solution
may be different.

1. fork followed by exec: this was mentioned in class. Creating a child and loading
a new image in one new call isn’t just easier on the process, it also allows the OS
to avoid some of the memory overhead associated with fork. Implementing this
requires adding the system call and handling errors properly, which could occur
either during fork or exec.

2. open followed by read or write: if I want to read the entire contents of a file into
memory, why not just have a single call that takes a path and a buffer and performs
the operation without requiring two calls and the maintenance associated with the
process file table? Implementing this requires adding the new system call and
handler, but not necessariy much else.

3. read or write and lseek: the fact that read and write manipulate the file
offset implicitly and therefore require separate calls to lseek is both annoying
and may cause problems when multiple threads try to use the same file handle.
A separate system call could perform a read or write using an offset provided
as an argument, eliminating the need to use lseek. Implementing this requires
adding the new system call.

12 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

Grader Feedback:

1. Instead of talking about problems and solutions of a thin syscall interface, students
have often described what they believed were missing but useful syscalls, such as
‘copyfile()‘.

2. They also seem to consider thin interfaces to be faster than thick which is incorrect—
more code is necessary to maintain necessary abstractions such as the VFS layer

13 / 14



CSE 421/521 Midterm Solutions 25 Mar 2015

Solution: Concurrent System Calls
This question was inspired by this fantastic MIT paper on scalable interfaces. We may
look at this in more detail later in the semester.

First, describe the OS performance bottleneck that this code might encounter on a
multicore system. The key was to process the note that we left you, noting that open
currently is implemented to return the lowest-available file descriptor. However, pro-
cesses don’t rely on this behavior and really only treat the file descriptor as a reference
to the file handle, so you could alter this.

And you want to, because it’s the performance bottleneck. Each time open is called
it has to lock and search the file table from the beginning to find the lowest-available
entry. (Note that in this case we cannot apply the read-lock-read optimization used in
the 2014 midterm, because the file descriptor is supposed to be the lowest available.)
The locking and long critical section caused by the required linear search have the
effect of unnecessarily serializing concurrent calls to open that could proceed inde-
pendently on multiple cores.

Second, describe how to alter the system call interface to remove this particular
performance bottleneck. Once you see the bottleneck this is pretty obvious: change
open to not guarantee that it will return the lowest-available file descriptor. This has
two benefits. First, we can start the search at a random location, meaning that we will
find an available file descriptor more quickly even if decide to grab a lock during the
process. And if you were even more clever (and present at our midterm review), you
probably noticed that you could apply the read-lock-read optimization here as well
and avoid holding a lock outside of the loop.

Grader Feedback:

Scores on this question were unusually low for the following reasons:

1. A lot of people did not fully understand what was being asked

2. People tried to fix the code provided instead of the underlying syscall implemen-
tation

3. Many failed to identify the underlying bottleneck

14 / 14

http://web.mit.edu/amdragon/www/pubs/commutativity-sosp13.pdf

